MCB 5472

Phylogenetic reconstruction #2

Peter Gogarten
Office: BSP 404
phone: 860 486-4061,
Email: gogarten@uconn.edu
OldAssignments:

• Write a script that determines the number of elements in a hash.

• Write a script (or subroutine) that prints out a hash sorted on the keys in alphabetical order.

• How can you remove an entry in a hash (key and value)?

• Write a program that it uses hashes to calculates mono-, di-, tri-, and quartet-nucleotide frequencies in a genome.
exercises:

Write a script that determines the number of elements in `%ash`.
 @keys = keys(%ash); # assigns keys to an array
 $number = @keys; # determines number of different keys (uses array in scalar context).
 print "$number

Write a script that prints out a hash sorted on the keys in alphabetical order.
 @gi_names = sort(keys(%gi_hash)); # sorts key and assigns keys to an array
 foreach (@gi_names) {
 print "$_ occurred $gi_hash{$_} times
 }

Remove an entry in a hash (key and value):
 delete %gi_hash{$_};

Sort based on code {}

```perl
#!/usr/bin/perl -w

@oligos = qw/ AGTCC AGT GTAC AGGAGGAT AGAGG GAGCCCCA CCCIC GA /;
@sorted = sort {length($a) <=> length($b)} @oligos;

print join("\n", @sorted), "\n";
```

or

```perl
use Document::Writer::Perl -w;

@oligos = qw/ AGTCC AGT GTAC AGGAGGAT AGAGG GAGCCCCA CCCIC GA /;
@sorted = sort {
    (length($a) <=> length($b))
    or
    ($a cmp $b)
} @oligos;

print join("\n", @sorted), "\n";
```
To sort Keys by their value (See class 4 & 5):

```perl
@sorted_by_value = sort { $gi_hash{$a} <=> $gi_hash{$b} } keys %gi_hash;
```

or

```perl
@sorted_by_value = sort by_value (keys (%gi_hash));
sub by_value {
    $gi_hash{$a} <=> $gi_hash{$b}
    or
    $a <=> $b  # if the values are the same, then sort ascibet
} # defines the order smaller before larger (a before b)
```
Write a script that takes all phylip formatted aligned multiple sequence files present in a directory, and performs a bootstrap analyses using maximum parsimony.

Files you might want to use are A.fa, B.fa, alpha.fa, beta.fa, and atp_all.phy. **BUT** you first have to convert them to phylip format **AND** you should replace some or all gaps with ?

(In the end you would be able to answer the question “does the resolution increase if a more related subgroup is analyzed independent from an outgroup?”)
hints

Rather than typing commands at the menu, you can write the responses that you would need to give via the keyboard into a file (e.g. your_input.txt)

You could start and execute the program protpars by typing

protpars < your_input.txt

your input.txt might contain the following lines:

infile1.txt
r
t
10
y
r
r

in the script you could use the line

system ("protpars < your_input.txt");

The main problem are the overwrite commands if the outfile and outtree files are already existing. You can either create these beforehand, or erase them by moving (mv) their contents somewhere else.
create * . phy files

the easiest (probably) is to run clustalw with the phylip option: For example (here):

```perl
#!/usr/bin/perl -w
print "# This program aligns all multiple sequence files with names *.fa
# found in its directory using clustalw, and saves them in phyip format.
"
while(defined($file=glob("*.fa"))){
    @parts=split(\./,$file);
    $file=$parts[0];
    system("clustalw -infile=$file.fa -align -output=PHYLIP");
}
# cleanup:
system("rm *.dnd");
exit;
```

Alternatively, you could use a web version of readseq – this one worked great for me 😊
Alternative for entering the commands for the menu:

```perl
#!/usr/bin/perl -w

system ("cp A.phy infile");

system ("echo -e 'y\n9\n'|seqboot");

exit;

`echo` returns the string in ``, i.e., `y\n9\n`. The `-e` options allows the use of `
`. The `|` symbol pipes the output from `echo` to `seqboot`
Very Old Assignment

Write a script that takes a genome (fna file) and calculates the GC content.

Modify the script to count tetra- and penta-nucleotide frequencies.

Modify the script so that it creates a table that gives the GC, tetra- and penta-nucleotide content in a sliding window moving through the genome.

(For which of these programs, and for which problems might you want to consider, or correct for strand bias?)
Rolling window example from GC rolling.pl

`assign first window`
```perl
for (my $k = 0; $k < 100; $k++)
{
 $window[$k] = $bases[$k];
}
```

`calculate GC content in window`
```perl
for (my $l=100; $l<=($num_bases+1); $l++) { #big loop starts

 for (my $i=0; $i<=100; $i++) #counts Gs and Cs in window Note the number of bases is one larger than the array
 {
 if (($window[$i] =~ "G") or ($window[$i] =~ "C")) #if it matches G or C increase counter
 {$num_GC++;}

 } $GC_content[$count] = $num_GC;
print "$num_GC $bases[$l] ";
$num_GC=0;

#move window by one to right
$count++;
shift @window;
print "$test\n";
push @window, $bases[$l];
}
print join(" ",@GC_content);
print "\n";
```
for (my $l=100; $l<($num_bases+1); $l++) { #big loop starts

    for (my $i=0; $i<(1000); $i++) #counts Gs and Cs in window Note the {
        if (($window[$i]=="C")) #if it matches C increase counter
            {$num_CmG++;}
        if (($window[$i]=="G") ) #if it matches G or C increase counter
            {$num_CmG--;}
    }
    $CmG_content[$count]=($num_CmG);
    print "$num_CmG\t$bases[$l]\t$l\n";

    if ($count++<1000) {
        shift @window;
        # print "$test\n";
        push @window, $bases[$l];
    }
    print join(" ",@CmG_content);

    $outfile="test";

    open(OUT, "-> $outfile") or die "cannot open $outfile: $!";

    foreach (@CmG_content) {
        $printcount++;
        if ($printcount == 100)
            {print OUT "$\n";
             $printcount=0;
            }
    }
    print OUT "\n";
    print "\n";
Window=1000, printed every 100

Thermus thermophilus SG0.5JP17-16
Cumulative Strand Bias SG0
New Assignment

Given a multiple fasta sequence file*, write a script that for each sequence extract the 
gi number and the species name. and rewrites the file so that the annotation line starts 
with the gi number, followed by the species/strain name, followed by a space. (The gi 
number and the species name should not be separated by or contain any spaces – replace them by _. This is useful, because clustalw will recognize the number and name as handle for the sequence.)

Assume that the annotation line follows the NCBI convention and begins with the > followed by the gi number, and ends with the species and strain designation given in 
[]

Example:
>gi|229240723|ref|ZP_04365119.1| primary replicative DNA helicase; intein [Cellulomonas flavigena DSM 20109]

Example multiple sequence file is here.

• Work on your student project
Trees – possible reasons for conflict

If this is the probable organismal tree:

- species A
- species B
- species C
- species D

what could be the reason for obtaining this gene tree:

- seq. from A
- seq. from D
- seq. from C
- seq. from B
lack of resolution

e.g., 60% bootstrap support for bipartition (AD)(CB)
long branch attraction artifact

e.g., 100% bootstrap support for bipartition (AD)(CB)

What could you do to investigate if this is a possible explanation?
use only slow positions,
use an algorithm that corrects for ASRV
add sequences that break-up the long branches
Gene transfer

Organismal tree:

molecular tree:

speciation

gene transfer

species A
species B
species C
species D

seq. from A
seq. from D
seq. from C
seq. from B
Lineage Sorting

Organismal tree:

species A
species B
species C
species D

molecular tree:

seq. from A
seq. from D
seq. from C
seq. from B

Genes diverge and coexist in the organismal lineage
Gene duplication

Organismal tree:

molecular tree:

Gene duplication
Gene duplication and gene transfer are equivalent explanations. 

Horizontal or lateral Gene Transfer
Note that scenario B involves many more individual events than A

Ancient duplication followed by gene loss
1 HGT with orthologous replacement
1 gene duplication followed by 4 independent gene loss events

The more relatives of C are found that do not have the blue type of gene, the less likely is the duplication loss scenario.
Phylip

written and distributed by Joe Felsenstein and collaborators (some of the following is copied from the PHYLIP homepage)

PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring phylogenies (evolutionary trees).

PHYLIP is the most widely-distributed phylogeny package, and competes with PAUP* to be the one responsible for the largest number of published trees. PHYLIP has been in distribution since 1980, and has over 15,000 registered users.

Output is written onto special files with names like "outfile" and "outtree". Trees written onto "outtree" are in the Newick format, an informal standard agreed to in 1986 by authors of a number of major phylogeny packages.

Input is either provided via a file called “infile” or in response to a prompt.
Input and output files

For most of the PHYLIP programs, information comes from a series of input files, and ends up in a series of output files:

| infile --> | intree --> | weights --> | categories --> | fontfile --> | -------program------- | -------outtree------- | -------plotfile------- | -------outfile------- |

The programs interact with the user by presenting a menu. Aside from the user's choices from the menu, they read all other input from files. These files have default names. The program will try to find a file of that name - if it does not, it will ask the user to supply the name of that file. Input data such as DNA sequences comes from a file whose default name is infile. If the user supplies a tree, this is in a file whose default name is intree. Values of weights for the characters are in weights, and the tree plotting program need some digitized fonts which are supplied in fontfile (all these are default names).
What’s in PHYLYIP

Programs in PHYLYIP allow to do parsimony, distance matrix, and likelihood methods, including bootstrapping and consensus trees. Data types that can be handled include molecular sequences, gene frequencies, restriction sites and fragments, distance matrices, and discrete characters.

Phylip works well with protein and nucleotide sequences
Many other programs mimic the style of PHYLYIP programs. (e.g. TREEPUZZLE, phyml, protml)

Many other packages use PHYLYIP programs in their inner workings (e.g., PHYLO_WIN)

PHYLYIP runs under all operating systems

Web interfaces are available
Programs in PHYLIP are Modular

For example:

SEQBOOT take one set of aligned sequences and writes out a file containing bootstrap samples.

PROTDIST takes a aligned sequences (one or many sets) and calculates distance matrices (one or many)

FITC (or NEIGHBOR) calculate best fitting or neighbor joining trees from one or many distance matrices

CONSENSE takes many trees and returns a consensus tree

.... modules are available to draw trees as well, but often people use treeview or njplot
The Phylip Manual is an excellent source of information.

Brief one line descriptions of the programs are here.

The easiest way to run PHYLIP programs is via a command line menu (similar to clustalw). The program is invoked through clicking on an icon, or by typing the program name at the command line.

> seqboot
> protpars
> fitch

If there is no file called infile the program responds with:

[gogarten@carrot gogarten]$ seqboot
seqboot: can't find input file "infile"
Please enter a new file name>
example: seqboot and protpars on infile1
Phylib programs can be combined in many different ways with one another and with programs that use the same file formats.
Example 1 Protpars

example: seqboot, protpars, consense on infile1

NOTE the bootstrap majority consensus tree does not necessarily have the same topology as the “best tree” from the original data!

threshold parsimony,
gap symbols - versus ?
(in vi you could use :%s/-/?/?/g to replace all – ?)
outfile
outtree compare to distance matrix analysis
Extended majority rule consensus tree

CONSENSUS TREE:
the numbers on the branches indicate the number of times the partition of the species into the two sets which are separated by that branch occurred among the trees, out of 100.00 trees

branches are scaled with respect to bootstrap support values, the number for the deepest branch is handled incorrectly by njplot and treeview

remember: this is an unrooted tree!
Tree is scaled with respect to the estimated number of substitutions.

what might be the explanation for the red algae not grouping with the plants?

If time: demo of njplot
protdist

PROTdist
Settings for this run:
P  Use JTT, PMB, PAM, Kimura, categories model?  Jones-Taylor-Thornton matrix
G  Gamma distribution of rates among positions?  No
C  One category of substitution rates?  Yes
W  Use weights for positions?  No
M  Analyze multiple data sets?  No
I  Input sequences interleaved?  Yes
0  Terminal type (IBM PC, ANSI)?  ANSI
1  Print out the data at start of run  No
2  Print indications of progress of run  Yes
without and with correction for ASRV
Figure 1. The probability density functions of gamma distributions.
Figure 4. Distributions of the $\alpha$ values of 51 nuclear (solid histograms) and 13 mitochondrial (open histograms) genes

subtree with branch lengths
without and with correction for ASRV
compare to trees with FITCH and clustalw – same dataset
bootstrap support ala clustal

protpars (gaps as ?)
PHYML - A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood

An online interface is [here](#); there is a command line version that is described [here](#) (not as straightforward as in clustalw); a phylip like interface is automatically invoked, if you type “phyml” – the manual is [here](#).

Phyml is installed on bbcxsrv1.

Phyml is part of seaview4
TREE-PUZZLE is a very versatile maximum likelihood program that is particularly useful to analyze protein sequences. The program was developed by Korbian Strimmer and Arnd von Haseler (then at the Univ. of Munich) and is maintained by von Haseler, Heiko A. Schmidt, and Martin Vingron (contacts see http://www.tree-puzzle.de/).
TREE-PUZZLE

- allows fast and accurate estimation of ASRV (through estimating the shape parameter alpha) for both nucleotide and amino acid sequences,
- It has a “fast” algorithm to calculate trees through quartet puzzling (calculating ml trees for quartets of species and building the multispecies tree from the quartets).
- The program provides confidence numbers (puzzle support values), which tend to be smaller than bootstrap values (i.e. provide a more conservative estimate),
- the program calculates branch lengths and likelihood for user defined trees, which is great if you want to compare different tree topologies, or different models using the maximum likelihood ratio test.
- Branches which are not significantly supported are collapsed.
- TREE-PUZZLE runs on "all" platforms
- TREE-PUZZLE reads PHYLIP format, and communicates with the user in a way similar to the PHYLIP programs.
Maximum likelihood ratio test

If you want to compare two models of evolution (this includes the tree) given a data set, you can utilize the so-called maximum likelihood ratio test. If \( L_1 \) and \( L_2 \) are the likelihoods of the two models, \( d = 2(\log L_1 - \log L_2) \) approximately follows a Chi square distribution with \( n \) degrees of freedom. Usually \( n \) is the difference in model parameters. I.e., how many parameters are used to describe the substitution process and the tree. In particular \( n \) can be the difference in branches between two trees (one tree is more resolved than the other).

In principle, this test can only be applied if one model is a more refined version of the other. In the particular case, when you compare two trees, one calculated without assuming a clock, the other assuming a clock, the degrees of freedom are the number of OTUs – 2 (as all sequences end up in the present at the same level, their branches cannot be freely chosen).

To calculate the probability you can use the CHISQUARE calculator for windows available from Paul Lewis.
TREE-PUZZLE allows (cont)

- TREE-PUZZLE calculates distance matrices using the ml specified model. These can be used in FITCH or Neighbor.
- PUZZLEBOOT automates this approach to do bootstrap analyses – **WARNING**: this is a distance matrix analyses!
- The official script for PUZZLEBOOT is [here](#) – you need to create a command file (puzzle.cmds), and puzzle needs to be envocable through the command puzzle.
- Your input file needs to be the renamed outfile from seqboot
- A slightly modified working version of `puzzleboot_mod.sh` is here, and here is an example for `puzzle.cmds`. Read the instructions before you run this!
- Maximum likelihood mapping is an excellent way to assess the phylogenetic information contained in a dataset.
- ML mapping can be used to calculate the support around one branch.

@@@  Puzzle is cool, don't leave home without it! @@@
The more species you add the lower the support for individual branches. While this is true for all algorithms, in TREE-PUZZLE this can lead to completely unresolved trees with only a few handful of sequences.

Trees calculated via quartet puzzling are usually not completely resolved, and they do not correspond to the ML-tree: The determined multi-species tree is not the tree with the highest likelihood, rather it is the tree whose topology is supported through ml-quartets, and the lengths of the resolved branches is determined through maximum likelihood.
Elliot Sober’s Gremlins

Observation: Loud noise in the attic

Hypothesis: gremlins in the attic playing bowling

Likelihood =

\[ P(\text{noise} | \text{gremlins in the attic}) \]

\[ P(\text{gremlins in the attic} | \text{noise}) \]
Bayes' Theorem

Reverend Thomas Bayes (1702-1761)

\[ P(model|data, I) = \frac{P(data|model, I) \cdot P(model, I)}{P(data, I)} \]

- **Posterior Probability** represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information.
- **Prior Probability** describes the degree to which we believe the model accurately describes reality based on all of our prior information.
- **Likelihood** describes how well the model predicts the data.
- **Normalizing constant**
ml mapping

From: Olga Zhaxybayeva and J Peter Gogarten  *BMC Genomics* 2002, 3:4
Figure 5. Likelihood-mapping analysis for two biological data sets. (Upper) The distribution patterns. (Lower) The occupancies (in percent) for the seven areas of attraction.

(A) Cytochrome-\(b\) data from ref. 14. (B) Ribosomal DNA of major arthropod groups (15).

Cluster a: 14 sequences  
outgroup (prokaryotes)

Cluster b: 20 sequences  
other Eukaryotes

Cluster c: 1 sequences  
Plasmodium

Cluster d: 1 sequences  
Giardia

Number of quartets in region 1: 68 (= 24.3%)
Number of quartets in region 2: 21 (= 7.5%)
Number of quartets in region 3: 191 (= 68.2%)

Occupancies of the seven areas 1, 2, 3, 4, 5, 6, 7:
Alternative Approaches to Estimate Posterior Probabilities

Bayesian Posterior Probability Mapping with MrBayes
(Huelsenbeck and Ronquist, 2001)

Problem:
Strimmer’s formula
\[ p_i = \frac{L_i}{L_1 + L_2 + L_3} \]
only considers 3 trees
(those that maximize the likelihood for
the three topologies)

Solution:
Exploration of the tree space by sampling trees using a biased random walk
(Implemented in MrBayes program)
Trees with higher likelihoods will be sampled more often

\[ p_i \approx \frac{N_i}{N_{\text{total}}} \]
, where \( N_i \) - number of sampled trees of topology \( i \), \( i=1,2,3 \)
\( N_{\text{total}} \) – total number of sampled trees (has to be large)
Illustration of a biased random walk
Decomposition of Phylogenetic Data

Phylogenetic information present in genomes

Break information into small quanta of information (bipartitions or embedded quartets)

Analyze spectra to detect transferred genes and plurality consensus.
TOOLS TO ANALYZE PHYLOGENETIC INFORMATION FROM MULTIPLE GENES IN GENOMES:

Bipartition Spectra (Lento Plots)
BIPARTITION OF A PHYLOGENETIC TREE

Bipartition (or split) – a division of a phylogenetic tree into two parts that are connected by a single branch. It divides a dataset into two groups, but it does not consider the relationships within each of the two groups.

95 compatible to illustrated bipartition

Orange vs Rest
compatible to illustrated bipartition

Yellow vs Rest
* * * . . . * *

compatible to illustrated bipartition

Orange vs Rest
. . * . . . . *
incompatible to illustrated bipartition
"Lento"-plot of 34 supported bipartitions (out of 4082 possible)

13 gamma-proteobacterial genomes (258 putative orthologs):
- E.coli
- Buchnera
- Haemophilus
- Pasteurella
- Salmonella
- Yersinia pestis (2 strains)
- Vibrio
- Xanthomonas (2 sp.)
- Pseudomonas
- Wigglesworthia

There are 13,749,310,575 possible unrooted tree topologies for 13 genomes
Consensus clusters of eight significantly supported bipartitions

Phylogeny of putatively transferred gene (virulence factor homologs (mviN))

only 258 genes analyzed
10 cyanobacteria:

- *Anabaena*
- *Trichodesmium*
- *Synechocystis* sp.
- *Prochlorococcus marinus* (3 strains)
- Marine *Synechococcus*
- *Thermo-synechococcus elongatus*
- *Gloeobacter*
- *Nostoc punctioforme*

"Lento"-plot of supported bipartitions (out of 501 possible)

Based on 678 sets of orthologous genes

A single rogue sequence that moves from one end of a Hennigian comb to the other changes all bipartitions.

Supported quartets:
\[ Q_1 \cap Q_2 = \{3\,4\,5\,6, 1\,4\,5\,6, 2\,4\,5\,6, 2\,3\,5\,6, 1\,3\,5\,6, 1\,2\,5\,6, 1\,2\,3\,6, 1\,2\,4\,6, 1\,3\,4\,6, 2\,3\,4\,6, 2\,3\,4\,5, 1\,3\,4\,5, 1\,2\,4\,5, 1\,2\,3\,5, 1\,2\,3\,4\} \]

Supported bipartitions:
\[ B_1 \cap B_2 = \emptyset \]
Decay of bipartition support with number of OTUs

Phylogenies used for simulation
Example for decay of bipartition support with number of OTUs

Sequence lengths

200

500

1000

Only branches with better than 70% bootstrap support are shown
Decay of bipartition support with number of OTUs

Each value is the average of 10 simulations using seq-gen. Simulated sequences were evaluated using PHYML. Model for simulation and evaluation WAG + $\Gamma(\alpha=1, 4$ rate categories)
Bipartition Paradox:

• The more sequences are added, the lower the support for bipartitions that include all sequences. The more data one uses, the lower the bootstrap support values become.

• This paradox disappears when only embedded splits for 4 sequences are considered.
Bootstrap support values for embedded quartets

Quartet spectral analyses of genomes iterates over three loops:
- Repeat for all bootstrap samples.
- Repeat for all possible embedded quartets.
- Repeat for all gene families.

Zhaxybayeva et al. 2006, Genome Research, 16(9):1099-108
COMPARISON OF DIFFERENT SUPPORT MEASURES

A: mapping of posterior probabilities according to Strimmer and von Haeseler

B: mapping of bootstrap support values

C: mapping of bootstrap support values from extended datasets
**ml-mapping versus bootstrap values from extended datasets**

More gene families group species according to environment than according to 16SrRNA phylogeny.

In contrast, a themophilic archaeon has more genes grouping with the thermophilic bacteria.
Quartet decomposition analysis of 19 *Prochlorococcus* and marine *Synechococcus* genomes. Quartets with a very short internal branch or very long external branches as well as those resolved by less than 30% of gene families were excluded from the analyses to minimize artifacts of phylogenetic reconstruction.